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1. WHAT ARE THE SCHOENBERG AND BIRKHOFF SPACES OF SPLINES?

These spaces of splines are smoothness spaces, that is, they require some
measure of smoothness for their elements S. They are usually defined
by postulating certain smoothness properties of S at their knots
( = breakpoints). But is it not possible to define the spaces "axiomatically,"
by means of some intrinsic properties, without mentioning the knots of
each S? This is possible, and not difficult. To be specific, we do this for
splines on R

An analogy is to rearrangement-invariant spaces X (of measurable
functions on IR). They may be described by assuming that if 1/1-< Igl (this
is the Hardy-Littlewood-P6Iya quasi-order relation) and if g E X, then also
lEX.

A function S on IR is a spline of order r = 1, 2, ... if there is a finite or
infinite increasing sequence of points T:=(tJ, iE7L, on IR, Itil~oo if
i~ ± 00, so that on each interval (t i , t i + 1), and on the intervals (- 00, td
or (tp , (0) (if there is a first or a last tJ it is a polynomial of degree r-1,
and of degree exactly r -1 on one of the intervals. At the t i , S and its
derivatives (which are also splines) are defined by continuity, if possible;
otherwise they are not defined. A point t i is a breakpoint of S, if one of the
derivatives s(m) is not defined at t i •

Let ~ := ~(IR) be the linear space of all splines of order ~ r on IR.
A Schoenberg space ~(T, m, IR) is defined (see [1J) by r= 1, 2, ..., a

sequence T= (tJ and by a corresponding sequence m = (mJ of integers,
o~ m i < r. A spline S belongs to this space if it is of order ~ r, if its
breakpoints are among the t i , and if all derivatives s(m), m < m i , exist at t i •

* This work was partially supported by Texas ARP and Deutsche Forschungsgemeinschaft.

360
0021-9045/89 $3.00
Copyright © 1989 by Academic Press, Inc.
All rights of reproduction in any form reserved.



NOTES ON APPROXIMAnON 361

For the Birkhoff space of splines, instead of the mi , for each i we have
integers 0 ~ m i, 1 < .,. < m i, p < r, p = p(i); then 8 belongs to the space if an
8(m) exist at t i , except perhaps those with m = mi,j'

For two splines 8, 8 1 E g:;. (with breakpoints that are not specified), we
define two smoothness relations. We say that Sis (*) at least as smooth as
S 1 if S has all derivatives of orders ~ m at x E IR whenever 8 1 has these
derivatives at x. We say that Sis (**) at least as smooth as 8 1 if S has the
derivative of order m at x E IR whenever S 1 has this derivative at x.

A subspace g of g:;. has the smoothness property (*) (or (**)) if 8 1 E g
implies S E g for each S that is (*) (or (**)) at least as smooth as 8 1 ,

THEOREM 1. A subspace g of g:;. is a Schoenberg (or a Birkhoff) spline
space if and only if it is (*) (or (**)) smooth and is closed with respect to the
uniform convergence on compact sets.

Proof We have to prove only the sufficiency of the conditions. Let [I'

be (*)- or (** )-smooth. Let (t;) be an increasing sequence in IR, each t i

being a breakpoint of some spline S Eg. We prove that It i I ---+ 00 if i ---+ 00

or i ---+ - 00. Let

A. ( )={(x-a),,:-,
'f'm x, a ( )x-a ",-,

a~O

a<O.
(1.1 )

From the smoothness property, for each ti there is an mi, 0 ~ mi < r, so
that rPi(X):=rPm,(x;t;) belongs to g. Then alsof=L:(IJI+ 1)-2 ¢Jj Eg, a
contradiction if It i I ---+ 00 is not satisfied, since then f ¢ g:;.. We can now
combine all breakpoints of all S E g into an increasing sequence T:=
(with Itil---+ 00 for i ---+ ± 00 in the infinite case).

If g is (* )-smooth, for each i we let m be the smallest integer so that one
of the splines SEg does not have a derivative s(m;)u;). Let rPi(X)=
rPm'(x, tJ Then the function

(1.2)

belongs to g, since on each interval [-A, A], all terms of the sum with
sufficiently large i are zero. This So is a universal ("the worst") spline of g:
A spline S E g:;. belongs to g if and only if S is (*) at least as smooth as So.
This proves that g is the Schoenberg space g:;.(T, ro, IR).

If g is (** )-smooth, the proof is the same except that for each t i we let
the m i•j , 0 ~ m i,1 < ... < m i• p < Y, be all m for which the derivative s(m)(t;)
does not exist at t i for some S E g. The universal spline So is then given by

So(x) = I rPm)X, tJ I
t,j

(1.3)
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2. A BERNSTEIN-TYPE INEQUALITY FOR EXPONENTIAL SUMS

If Xn is a linear n-dimensional space of differentiable functions on [a, b],
imbedded in a normed space X, then sometimes we have

11f'llx ~ C(n) Ilfllx· (2.1 )

We hope to determine the best factor C(n) exactly, or asymptotically. In
more complicated cases, X n is not linear, and the correct inequality has
11f'11 in (2.1) with norm in a different space than X. Thus, Dolz'enko
ineqality [2] for rational functions R n of degree ~ n on [0, 1] has the form

(2.2)

Inequalities of Pekarski [3] for the derivatives of higher order of R n are
also of this type. Here we develop, using an argument of E. Schmidt [4], a
Bernstein-type inequality for the extended exponential sums on [a, b],

p

g(x) = L Pv(x)eA'X,
v~l

p

L (oPv+1)~n,
v~l

(2.3)

where oPv is the degree of the polynomial Pv. They form/the family tffn,
where the coefficients of the polynomials Pv and the Av are free- real
parameters. For fixed Av and fixed mv = oPV' the g E tffn are spanned by the
elements of the Haar system

(2.4)

It follows that a non-trivial function g cannot have more than n - 1 zeros.
The same applies to their derivatives, since g(k) E tffn, k = 1, 2, ....

The family tffn[a, b] contains zoom functions, that is, strictly increasing
functions g satisfying

°~ g(x) ~ G,

g(b) ~ A
(2.5)

for arbitrary G> 0, A> 0. An example is given by g(x) = GeA(X+B-b), where A
is sufficiently large.

This shows that for tffn there do not exist exact parallels to the Bernstein
inequality for polynomials. Inequalities that are true are weaker.

In the following theorem the norm is of the same type on both sides of
the inequality, but for the derivative it is computed on a smaller interval.
We improve the result of Schmidt somewhat; he gives an unspecified
constant C(n) in (2.6) instead of C exp(1X log2 n).
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THEOREM 2. For each ct>!, there is a constant C> 0 so that for all
g E Iffn[a, b] and for 15 < ! (b - a),

11g'llw [a+b,b-b]~Cb-InalOgnllgllw [a,b]. (2.6)

We need some facts about a function f E en + 1[_ 1, 1] with Ilfll w ~ 1.

1. In each interval (a, b) c [ -1, 1], b - a = d, there is a point y with

(
2k)k

rk(d):= d . (2.7)

Indeed, ILlZf(x)1 ~ 2k Ilfll ~ 2k if this difference is defined. This is the case jf
h = d/k, x = a. For some y, LlZf(x) = hkfk)(y), and we get (2.7).

2. Let [c, c+d] and [c-d,c] be subsets of [-1,1], and let
fkl(c)~c. Then for some CI' c~,

- f(k + 1)( CI) ~ (C - r(d)) ~ ,

f(k+ I)(C~) ~ (C- r(d))~, c-d~ c~ ~ c.

(2.8)

(2.9)

(2.10)

Let y E (c, C +d) satisfy (2.7). We obtain (2.8) from

__1_ {j(k)(y) _ f(kl(C)} ~ (C -r(d)) ~
y-c d

and the mean value theorem. Inequality (2.9) is similar.

3. The following serves as a supplement to Rolle's theorem to obtain
additional zeros of fk+ 1).

Let c < c I ,j(k)(c) > O,j(k + 1)(cd < O. Iffk l has zeros to the left of c, then
for some y, c ~ y < Cj, f(k+ Il(y) = O.

Indeed, if x < c is the largest of the zeros, then necessarily fk+ j)(x) ~ 0,
and the conclusion follows.

Similarly, we have fk+ I)(y') = 0 for some y', c~ < y' ~ c', if f(kl(c ' )> 0,
fk+ Il(c~) > 0, and if there are zeros of fk) to the right of c'.

Proof of Theorem 2. Clearly, it is sufficient to prove the following.
There exists an absolute constant C> 0 with the property that g E

Iffn [ -15,15] and IlgL [ -15, 15] ~ 1 imply

1
g'(O) ~ C ~ na log n.
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This will be achieved by assuming that

(2.11 )

and by obtaining a contradiction for some C I < C 15 -Ina log n. All
derivatives of g belong to gn, but we can assume that g ¢ f!lJ".

We put dk=bn-Iexp(allog2k-allog2n), !<al <a, k=I,2, ...,n.
Then

(2.12)

then Ck >0, k = 1, ..., n + 1. For large k we have

k-I
L jlog2 j:::;;;klog2k-2klogk+C9(k);
j~1

hence for a properly chosen C

n n

=JnallOgn L (2k)k exp {-2a l klogk+C9(k)}
k~1

I co
:::;;;_nallogn+1 L exp{ -(2a l-l)klogk+C9(k)}

15 k~1

C5:. _ na log n
"" 15 .

Using (2.8) and (2.9) with C = C I , C= 0, d= dl> k = 1 we get points cz, C2
for which -dl :::;;; Cz <°< C2 :::;;; dl and

(2.14)

At the kth step, we find cic+l> Ck+1 for which Ck :::;;;Ck+1 <Ck +dk>
cic - dk :::;;; cic + I :::;;; cic and

(2.15)

Clearly, Ck> cicE(-b, b), k=I, ,n+1.
We now prove tht for k = 2, , n, g(k) has at least k -1 zeros in (cic, ck).

For k = 2 this follows from (2.14). Let this statement be true for some k.
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Applying 3, we obtain two zeros of g(k+l) with Ck ::::;Y<Ck+l, C~+l <
y' ::::; c~. In (c~, Ck) this function has at least k - 2 zeros by Rolle's theorem.
This yields k zeros of g(k + I) in (c~ + j, Ck+ d.

For g(n+l) we get n zeros in [-15,15], hence g(n+l)=O, or gEy;', a
contradiction. I

Note added in proof Y. Xu remarks that one can improve (2.6) somewhat, replacing n"logn

by n(l/2)logn + 5. One takes

a = .;; log(l + j)+A
k L. 1+'

jd }

with A = 1 + log 2. This leads to the estimate C j ,,;; (n 2/(j) e- X
'.
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